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General properties of the rigorous solution of the problem of the X-ray dynamical Laue diffraction from 
a bent crystal are discussed. The solution based on the Takagi equations is formulated in the form of the 
Huygens-Fresnel principle. Special attention is paid to the behaviour of the quasi-classical asymptotic 
expansion of the exact dynamical wave fields and to the comparison of the results with those obtained by the 
eikonal theory. The eikonal theory is developed as a result of the application of the stationary-phase 
method for the evaluation of the Kirchhoff integral in accordance with the Huygens-Fresnel principle. 
The focusing of X-rays (the intersection of the ray trajectories and the formation of a caustic) is analysed. 
The generalized eikonal theory when elaborated yields that the integrated diffracted intensity from a bent 
crystal tends to the correct kinematical value as the strain gradient increases. For practical purposes, a 
simple numerical method of calculation of the integrated intensity applied in a general case of asymmetric 
Laue diffraction is proposed. 

1. Introduction 

The dynamical theory of X-ray diffraction from a bent 
crystal was first developed by Penning & Polder (1961), 
Kato (1964), Penning (1966) and Bonse (1964). It deals 
with the eikonal approximation of the wave optics and 
makes it possible to explain a number of the experi- 
mental data, in particular, the constriction of the 
Pendellfsung fringes (Hart, 1966; Kato & Ando, 1966) 
and the asymmetry of the integral reflecting power with 
respect to the sign of the lattice bending (Fukushima, 
Hayakawa & Nimura, 1963; Meieran & Blech, 1965; 
Schwuttke & Howard, 1968). Further, the solution of 
the problem obtained affords some ground for the 
adequate description of X-ray topographs in the case 
of any continuously distorted crystal (Ando & Kato, 
1970; Ando, Patel & Kato, 1973; Fishman & Lutzau, 
1973; Kato & Patel, 1973; Patel & Kato, 1973). 

At the same time, because of the restrictions imposed 
by the applicability of the ray-optics concept the eiko- 
nal theory reveals two apparent faults: one cannot 
correctly describe the X-ray propagation through the 
strongly distorted crystal or near the edges of the Borr- 
man fan. 

For this reason, of special interest is the rigorous 
consideration of the X-ray diffraction problem for a 
crystal with a uniform strain gradient (Petrashen', 
1973; Chukhovskii, 1974a, b; Katagawa & Kato, 1974; 
Litzman & Janacek, 1974). The exact analytical solu- 
tion based on the Takagi equations (Takagi, 1962; 
1969) has been shown to be expressed in terms of con- 
fluent hypergeometric functions. On the one hand, this 
complicates the mathematical treatment; on the other 
hand, the physical analysis of the solution mentioned 

above is absolutely necessary if one is ever to construct 
an adequate description of the diffraction phenomenon 
in a homogeneously bent crystal. Hence, this may 
properly be the subject of a separate study. 

The aim of the present paper is to give a theoretical 
contribution to the same field: X-ray Laue diffraction 
from a homogeneously bent crystal. The results, which 
will be described here, may be regarded as a generaliza- 
tion of our earlier work (Chukhovskii & Petrashen', 
1975; Petrashen' & Chukhovskii, 1975). We shall (i) 
discuss the physical features of the exact dynamical 
wave fields inside a crystal with a uniform strain gra- 
dient in a most general form (§2); (ii) consider the be- 
haviour of the quasi-classical asymptotic expansion of 
the rigorous solution and compare the results with 
those of the eikonal theory (§§3, 4). This is useful for 
establishing the range of applicability of the eikonal 
theory and to point out how its results should be cor- 
rected in order to include the case of any strain gra- 
dient. 

In §4 we treat the ray optics of the X-ray field in a 
crystal for both the plane and the spherical incident 
wave. The ray trajectories appear as a result of the ap- 
plication of the stationary-phase method for the eva- 
luation of the Kirchhoffintegral in accordance with the 
Huygens-Fresnel principle. Generally, ray intersec- 
tions (singular points, caustic) may occur which can 
be interpreted as focusing points of the wave field. Near 
these points the stationary-phase method does not 
hold, nor does the eikonal theory. It turns out that the 
effect of the X-ray focusing persists even when the com- 
ponent of the strain gradient along the reflexion vector 
is equal to zero. 

The generalized eikonal theory when elaborated, 
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yields automatically that the integral reflecting power 
approaches the kinematical value with increasing 
strain gradient. Thus, the 'divergence' problem of the 
integrated intensity as a function of strain gradient 
which arises for a transparent (non-absorbing) crystal 
in the eikonal theory (Kato, 1964) is completely re- 
moved (§5). For the practical calculation of the inte- 
grated intensity a simple numerical method is pro- 
posed. It is applied in the general case of asymmetric 
Laue diffraction. 

Some additional treatment of the results obtained is 
carried out in § 6. 

2. The integral basis of the Huygens-Fresnel principle 

The X-ray coherent wave field inside a crystal orien- 
tated near the exact Bragg reflexion is described by the 
dynamical Takagi equations (Takagi, 1962; 1969) 

aEo 
i -~o + a - h  exp [- i (hu)]Eh=O 

OEh 
i-~h +0-h exp [i(hu)]Eo=0 (2.1) 

(with reference to the form of the equations and the 
notation used see, for example, Petrashen', 1973; Pe- 
trashen' & Chukhovskii, 1975). 

In the general case of a crystal with a uniform strain 
gradient the function (hu) has a quadratic coordinate 
dependence of the type 

(hu)= 2(As 2 + 2BSoSh + Cs2) . (2.2) 

In the expression for the displacement field (2.2) the 
terms linear in coordinates are omitted for simplicity, 
account of them reducing only to the renormalization 
of the Bragg angle 0B. For some interesting practical 
cases the coefficients A,B, C are given in Appendix I. 

Now, making of use of the substitution 

Eo =/~o exp ( -  2iCs2), Eh = ff~h exp (2iAs 2) (2.3) 

one can easily see that the set of linked equations for 
the amplitudes Eo, E h retains the form (2.1) with 

(h~) = 4BSoSh (2.4) 

instead of the function (2.2). 
Then,, the set (2.1), taking into account (2.2)-(2.4), is 

reduced to the following second-order partial differen- 
tial equations for the amplitude of the transmitted wave 
and the diffracted wave respectively 

02/?:0 a(h~) a/~o 
OSoC?S h i OSh OSo + 0-2~°=0 

O2Eh 0(hh) 0Eh 
OSoOS'------~h "11- i aS 0 aS h @ o'2E, h = 0 (2.5) 

( 0-2= 0-h0-h =- 1 + 2ik, k being the normalized dynamical 
absorption coefficient, k < 0). 

According to the Riemann method (Petrashen', 
1973) the solutions of equations (2.5), satisfying the 

known boundary conditions on the contour RQ in the 
scattering plane, take the form: 

~o(p)= ~o(R) + f. fORo ] \ ~Sh + 4iBsoRo/ /~odSh 

fR aEo + dso QRo 

/~h(P)=ff.h(Q)+ ~ f ORh --4iBShRh)ff~hdSo 
& & a S o  

a~h 
-t- ds  h (2.6) (2 eh  

where the Riemann functions Ro and Rh are found 
from the homogeneous conjugate equations: 

O2Ro c3 (soRo) + 0-2Ro = 0 
aSo(?S-------~h + 4iB -~o 

a 2 R_____Ah 
- 4iB a@h ( S h R h )  nt- 0-2Rh = 0 ,  (2.7) 

aSoOS h 

and from the characteristics should obey the condi- 
tions: 

Ro(Sh = She)= 1, 
Ro(So = Sop) = exp [--4iB(Sh-- Shp)Sop] (2.8a) 

Rh(So = Sop) = 1, 
Rh(Sh = shP)=exp  [4iB(so -- Soe)Shp] . (2.8b) 

Notice that as (2.8) follows from (2.7) the functions R0 
and Rh become equal to each other, provided that 
So ~ Sh and B --, - B  occur simultaneously. Thus, to 
solve the problem one has to find either one of the 
functions Ro or Rh. The Riemann functions under con- 
sideration were obtained in the previous papers (Pe- 
trashen', 1973; Chukhovskii, 1974a, b), therefore, we 
write directly the results for the functions R0 and R, 

Ro = exp [4iB(Shp-- Sh)So] 

X 1F1 i-4--B, 1 ; 4iB(soe-So) (Shp--Sh) 

R h = exp [ - 4iB(sop - SO)Sh] 

x x F 1 - -  t -4--~, 1 ; -- 4iB(Shp -- Sh) (Sop -- SO (2.9) 

where 1F1 is the confluent hypergeometric function. 
(2.6) and (2.9) define a general solution of the problem 

under consideration, i.e. the X-ray dynamical propaga- 
tion through a crystal with a uniform strain gradient. 

Hereafter we shall use the 'special' dimensionless 
system (Fig. 1): 

z = (So + Sh), X = SO -- Sh (2.10) 
in which the characteristic rays (the edges of the Borr- 
mann fan) are given by the equation x--_+ z for any 
asymmetry of the diffraction geometry. This permits 
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us to describe mathematically the asymmetric Laue 
diffraction in the same way as the symmetric (Petra- 
shen' & Chukhovskii, 1975) and simplifies the physical 
analysis of the results obtained. 

Finally, by use of (2.6), (2.9) with (2.10) the proper 
expressions for the dynamical wave field can be written 
in the form: 

go(P) = ~ (#oo(rv, r)go(r) ( d x - d z )  
dR Q 

+ l"  (#oh(rv, r)¢h(r)(dx+dz), 
dR Q 

Eh(P) = [ "  ffho(re, r ) 8 o ( r ) ( d x - d z )  
dR Q 

+ j"  ffhh(rv, r)gh(r)(dx+dz). (2.11) 
dR Q 

Here ~O,h(P) a r e  the total amplitudes of the trans- 
mitted and diffracted waves, respectively, at the ob- 
servation point (xe, zp); d°O,h(r) are these at any point 
(x,z) on the contour RQ; the integration is carried out 
along the segment of the contour restricted by the 
characteristics Ixp-xl =Zp-Z, which are drawn from 
the observation point (Xp, ze), i.e. between the points R 
and Q. Note that for validity of (2.11) the contour RQ 
should not be crossed twice by any characteristic. The 
influence functions fgm, are determined as follows 

ffmn = e x p  [ iq ( r v - r ) ]Gm.  

Goo(rv, r) = exp (i~o)16(x - xp + zv - z - O) 
i--- 

L 0-2 
4 ( Z e - Z + X v - X )  

( ( )1 xexp - i  1F1 l + i --4-B, 2 ; iB02 , 

S 

v 0 

g 

Fig. 1. The diffraction geometry and the coordinate systems used. 

Gho(rp, r) =--~- exp q~o -- i(hu)v- i - -  

x lF1  1+i~-~,  1;iBQ 2 " 

ahh(re, r) = exp ( -- i~h)E 6(x -- Xp + Z -- Zp + O) 
(T 2 
4 ( z v - z - x p + x )  

( ( 2)1 xexp i - -  1F1 1 - i - 4 - B , 2 ; - i B o  

Gob(re, r) = - - ~  exp i(hu)v - i(1)h -t- - -  (°2 ) 
x 1F1 1-i~--B, 1; - iBQ z (2.12) 

where 02 = ( zv -  z) 2 - ( x , -  x) 2; the functions 4~o~, have 
quadratic coordinate dependence of the form: 

~o(rv, r) = C [ (zv -  Xp) 2 --(Z-- X) 2] 

B 
-1"--2 [(Zp-Jr- X) 2 --(Xp + Z) 2] 

A 
~h(rp, r )=~-[ (zv  + Xp) 2 --(z + x) 2] 

B + ~ [ ( Z p - x ) e - ( x v - z ) 2 ] .  (2.13) 

The components of the vector q are connected with 
the deviation from the true Bragg condition in the co- 
ordinate origin e=-2s in208A01~ and the Fourier 
zero-component of the crystal polarizability Xo by the 
relation 

;~o(1T--b)+~b (2.14) 
rb'a = 2cgl/[lbl Re 0~-hXh)]" 

In (2.12) the symbols 0 provide that the singular points 
of the 6 functions are included in the integration 
region. 

General formulae (2.11) combined with (2.12) repre- 
sent the Huygens-Fresnel principle in Kirchhoff's in- 
tegral form for the X-ray dynamical wave fields, since 
they express the wave amplitudes at any point (Xp, Zl,) 
through their values on the boundary contour RQ. The 
influence functions (~mn(rv, r) have the physical meaning 
of the wave observed at the point re and initiated by a 
point source of unit strength, located at the point r. 
From (2.12) it follows that the influence functions, with 
accuracy of the phase factor, are invariant with respect 
to translations r ---, r + a, rp --. re + a. Physically, this 
is connected with the invariance of the intensity 
distribution of the point source inside a crystal, in this 
particular case with respect to translations which are 
the superposition of two subsequent rotations of equal 
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and opposite directed angles around the centre of 
curvature either of the crystal or of its net planes and 
the location point of the source (Chukhovskii & Pe- 
trashen', 1975; Petrashen' & Chukhovskii, 1975). At 
each of these rotations the intensity distribution is in- 
variant because of the cylindrical symmetry. It should 
be mentioned that the influence functions, as is easy to 
prove, coincide with the corresponding functions for 
a perfect crystal when the displacement field (2.2) 
vanishes. If only (2.3) does so, i.e. B=0,  the influence 
functions differ from those for a perfect crystal by the 
phase factor only. The latter case is realized for sym- 
metric Laue diffraction of X-rays from a bent crystal. 

In the case of Laue diffraction geometry, the am- 
plitudes g0h are given on the entrance surface of a 
crystal, z = 0, 

go(X,0) = g(x), gh(X,0)=0 (2.15) 

and from (2.11) one obtains 

f 
x p  + z p  

go(re) = dx~oo(Xv, x, ze, 0)g(x) 
,~ x p  - z p  

f 
x p  + z p  

gh(rp)= dX~ho(Xp, X, Zp, O)g(X). (2.16) 
~ x p  - z p  

Generally, the influence functions are determined by 
an expression of the form [see (2.12)] 

exp - aF1 I+i~-B-, v; iBQ 2 

( v = l , 2  for the diffracted and transmitted waves, 
respectively). 

Making use of the Kummer  transformation for the 
confluent hypergeometric function (Slater, 1960; 
Higher Transcendental Functions, 1953) one finds 

(72 iBQ2 ) ex ( 
) - -  1F, + e 4---~]' v ;  i e ] B ] #  2 

(2.17) 
where 

~2=l+2i~-l+2i(k+elB[(v-2)), e = s i g n B  (2.18) 

and either e = 1 or e = - 1  may be chosen. 
The right-hand side of (2.17) depends on the strain 

sign e through the parameter #2 only. The transition 
from the dynamical coefficient k to k can be interpreted 
as the renormalization of the dynamical absorption 
(Chukhovskii, 1974a). This renormalization takes place 
for the diffracted wave, v=  1, and therefore not for 
the transmitted wave. Hence, the intensity distribution 
of the transmitted wave from a point source is not sen- 
sitive to the sign of the strain gradient. Concerning the 
diffracted wave, the situation essentially depends on 
whether a crystal is transparent or absorbing. In the 
first case, ]klze'~ 1, in accordance with (2.17) change of 
the sign of B is equivalent to the transition to the com- 

plex conjugate expressions for the influence functions, 
which causes no change in either the diffracted inten- 
sity distribution or the integral reflecting power. 
However, in the second case, ]k]ze~> 1, because of the 
renormalization of the dynamical absorption, depend- 
ing on the sign of B, the intensity of the diffracted wave 
varies with the sign of B (the alternation of the strain- 
gradient sign may be caused by the change of the de- 
formation sign or be due to the inversion of the reflex- 
ion vector). As a result, the Friedel law for the integral 
reflecting power does not hold. 

All the features of the X-ray diffraction discussed 
here were first described within the frame of the eikonal 
theory by Ando & Kato (1970). The treatment above 
shows that they persist in the rigorous theory also. 

According to the physical concept of the propagation 
of the Bloch waves in the bulk crystal, each of the in- 
fluence functions can be represented as a sum of two 
terms: 

xp ( 2 2 v 

x F(2+ ix) 2-ix'v;-ilB[Q2 

where ~0(a, c; x) is the second solution of the Kummer  
equation (Higher Transcendental Functions, 1953), 
x=~z/41BI. 

In the limit ofB ~ 0 (2.19) tends to the suitable rela- 
tion pointed out by Balibar (1969) for a perfect crystal. 
On the other hand, the exact relation (2.19) manifests 
a lack of the interbranch scattering of the waves in the 
homogeneously bent crystal for any strain gradient. 

In the case of a perfect crystal, the first term on the 
right-hand side of (2.19) corresponds to the weakly 
absorbing wave mode (a-branch of the dispersion sur- 
face), whereas the second term corresponds to the 
strongly absorbing wave mode (fl-branch). So, the first 
term in (2.19) should be related to the a-branch and the 
second term to the fl-branch. Nevertheless, the be- 
haviour of the wave fields in the case under considera- 
tion is more complicated. 

By use of any suitable asymptotic representation of 
~(a,c;x) (see, for example, Slater, 1960 and §3) one 
obtains that the first term in (2.19) becomes much 
larger than the second term with increase of Q for 

< 0 [Re (ix) > 0] and vice versa for ~ > 0. The trans- 
mitted part (v = 2) of the a-mode is always weakly ab- 
sorbing. The diffracted part of the s-mode is weakly 
(strongly) absorbing for ~ < 0 (~ >0). In the case of 
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k = B, the amplitudes of the diffracted components of 
both the Bloch waves are equal to each other and only 
normal absorption takes place. This is a consequence 
of the renormalization of the dynamical absorption 
due to a strain gradient. 

The practical aspect of the analysis is that for a bent 
crystal the contrast of the Pendell6sung fringes depends 
on the sign of the strain gradient (Hashizume & 
Kohra, 1972). From this point of view the case of B <0 
is preferable. 

3. The quasi-classical asymptotes of the wave field 

The appropriate asymptotic expansions of the influ- 
ence functions in powers of the eikonal function are 
obviously effective in physical applications. The in- 
vestigation of the dynamical wave fields (2.12), (2.16), 
(2.19) in the central region of the Borrmann fan can be 
carried out by means of the quasi-classical asymptotic 
representation of (2.19). The following asymptotic ex- 
pansion of the confluent hypergeometric function is 
feasible: 

//V . ~2 

~,, [(_~)'-v 1-  exp (-rc/2[Bl)l'/2 

x {exp [i45(e)-icp(v, lB])] +exp [-i45(0)+ icp(v, IBI)]} 

(3.1) may be derived from the more general asymptotic 
expansion discussed in Appendix II provided that 
usually the X-ray dynamical absorption coefficient 
I/1<1. 

The applicability range of (3.1) is determined by the 
condition 

0~1 + B202~> 1 (3.2) 

which may be fulfilled for any B, when the crystal 
thickness t>> 1. 

In (3.1) the eikonal function 45(4 ) and the scattering 
phase cp(v, ]B]) are 

2 2 1+2i~ 45(4)=4/2/(1+B 0 ) + ~ l n  []/(1 +Bz0e)+IBI0] 

(3.3) 

[( ')] ~o(v, IBI)=-~(v- 1)+Im In F 1 +4--~ 

1 
+4 -~  [ln (4]BI)+ 1]. (3.4) 

The succession of terms in the right-hand side of 
(3.1) is the same as in (2.19), i.e. the term corresponding 
to the e-branch of the dispersion surface is the first one. 

The imaginary part of 45(0) has the form: 

k 
Im 45(Q)= ~-~ arsinh (IBI0) 

+e(v-2) ln[] / (1  +B202)+lBlo]. (3.5) 

The real part, Re 45(0), in conjunction with the first 
term in (3.5) is completely equivalent to the Kato 
eikonal (Kato, 1964). The transition to Kato's formulae 
is obtained by the relations 

1 m2c 
2Bz=Z, 2Bx=X,  

2IB[ If[ 
where Z, X, m0, c and f are Kato's variables. The 
second term in (3.5) is included in the amplitude of the 
diffracted wave in the Kato theory. 

The quasi-classical asymptote (3.1) represents by 
itself the generalized eikonal approach of the theory. 
The generalization consists in the appearance of the 
static scattering factor [1 - exp ( -  ~/21B[)] 1/2 and the 
scattering phase ~0(v, lBI) as functions of ]BI [see (3.1), 
(3.4)]. 

For small ]B] < 1 one has 

1 - e x p ( - 2 ~ B [ )  -~1 , cP(v, lB')-~2(v-1)+ 4,  

and (3.1), (3.3)-(3.5) reduce to the results of the Kato 
theory. In the case of large IB] >> 1 one has 

1 -exp  - -~2--/N' cP(v'lBI)~--2 ( v - l ) '  

i.e. the wave amplitudes of (3.1) are (rc/21BI) 1/2 times 
smaller than those in the eikonal theory. As is known 
in the eikonal theory (Kato, 1964), the integrated dif- 
fracted intensity from a transparent bent crystal in- 
creases in proportion to IBI, when ]BI tends to infinity. 
In the present study the static scattering factor appears 
to remove this unphysical result and leads to the above 
correct kinematical limit of the intensity (see §5 for 
details). Concerning the dependence of the scattering 
phase ~o(v, [B]) on IB], it is hardly observable because of 
the large difference in the amplitudes in (3.1) for IB] ~> 1. 

4. The ray trajectories 

In order to complete the comparison of the present 
study with the eikonal theory let us consider the ray 
trajectories of the wave-field propagation. They can be 
obtained as a result of the asymptotic evaluation of the 
integrals (2.16) by the stationary-phase method. Taking 
into account (2.12), (2.13) and (3.1), in the case of a 
plane incident wave, the stationary points can be 
found from 

c3 [Re 45+(xe, x, ze, O)]=O (4.1) 
c3x 

where 

Re ~±(rp, r )=q ( r e - r )+  45o(re, r) + [45(0)- cp]. 
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Here the -t- signs correspond to two wave modes. 
Notice that the imaginary part of the eikonal, Im ~b ±, 

is smaller than the real part for any B when (3.2) holds. 
For this reason, the effect of absorption on the position 
of the stationary points is negligible and the method 
above in the form of (4.1) is applicable for any strain 
gradient. 

Each of the equations (4.1) may be interpreted as a 
trajectory equation with its origins at two points on the 
entrance surface and at the running observation point 
(xe, zv). After some transformations one finds 

[2B(xv - x) -~ ~(x)] 2 - [-2Bzv - r/(x)] 2 = 1 (4.2) 

where 

r l ( x ) = R e r l x + ( C - B ) x ,  ¢(x)=]/[-1 +r/Z(x)]. (4.3) 

The trajectories (4.2) are similar to those obtained with 
the eikonal theory (Penning & Polder, 1961; Kato, 
1964). The new circumstance is the dependence of the 
parameters r/(x) and ~(x) on the coordinate x. This is 
because of the phase factor in (2.12) and describes the 
linear alternation of the deviation from the Bragg 
condition along the entrance surface. Thus, the plane 
incident wave generates two 'fans' of trajectories. One 
'fan' is always divergent, whereas the other is conver- 
gent. From this point of view the formation of caustics 
may be possible, i.e. the formation of the ray inter- 
section points where the ray optics fails in general. 
These points can be determined by the compatible 
solution of two equations, one of which is (4.1) and the 
other: 

Ox z [Re ~+(Xp, X, Zp,0)] =0 .  (4.4) 

Excluding the coordinate x from (4.1) and (4.4), one 
obtains the equation of the caustic, which consists of 
two sheets corresponding to the two branches of the 
dispersion surface [-or two signs in (4.1)]. Each point of 
any sheet of the caustic is a focusing point for either 
one or the other wave mode. The lower sheet rep- 
resents the real focusing points corresponding to the 
convergent 'fan' of trajectories; the upper sheet cor- 
responds to the divergent 'fan', its focusing points 
being imaginary. In the particular case of the symme- 
trical Laue diffraction, when B = 0, the caustic is given 
by 

Czp= -t-[(Cxp+ Re glx)2/3 + l] 3/2. (4.5) 

From (4.5) it follows that the critical thickness of a 
crystals from which the caustic is formed, is 

Zmin = ICI- l(Cxp+ Re r/x =0) .  (4.6) 

It may be seen that the point defined by (4.6) lies on 
the central trajectory xp = constant and this point is a 
singular point of the caustic, since the derivative 
dZl,/dxv is indefinite. As an example, the caustic and 
several central trajectories are plotted in Fig. 2. 

The above treatment was carried out for the case of 
a plane incident wave, but the results may be readily 

expanded to include the case of a spherical wave. With 
respect to a plane wave with the same direction of in- 
cidence (specified by Re r/:,) at the origin of the co- 
ordinates, the spherical wave introduces a phase of 
the form px2/2 which should be added to Re q)± in 
(4.1) and (4.4). This leads to the substitution C ~ C - P  
in all the above formulae. For a point source, located 
at a distance L from the origin of the coordinates on the 
entrance surface, the coefficient P is given by 

p = sin 2 20B A 2 

27r/2 2L" (4.7) 

With the reasonable values A ~ 1 0  #m, 2,-~1 /~, 
L ~ 1 m, P is estimated to be about unity. Hence, in 
order to obtain the focusing of the spherical incident 
wave by a thick crystal, t--, 100, the coefficients C and P 
should have the same order of magnitude, C,~ P, i.e. 
L--~R, where R is the radius of the crystal curvature. 
On the other hand, when P ~  1, P>> ICI, IB[, the wave 
field picture can be calculated with the approximation 
of infinite P. In the latter case the singular points of the 
caustic coincide with each other and with the origin 
of coordinates, while the caustic itself degenerates into 
the characteristic rays x v - x  = +_ Zp (the edges of the 
Borrmann fan). Now (4.2) takes different forms for 
x = 0 and x -¢ 0. If x 4= 0, there are the characteristic rays 
IXp-X[=Zp only and no diffracted intensity may be 
associated with them. In the case of x = 0 the trajectory 
equation has the previous form (Kato, 1964): 

[2BxpT(1 +Re  2 17x)1/2] 2 --(2Bzp--P£e/Ix) 2 = 1. (4.8) 

However, now the angular derivation parameter Re r/x 
is uncertain and all the trajectories exist simultane- 
ously. 

5. The integrated intensity of the diffracted wave 

Let us consider briefly the integral reflecting power 
from a thick bent crystal. By use of the asymptotic ex- 
pansion (3.1), for the non-oscillating part of the inte- 
grated intensity we obtain 

~/,(Mo, Mb, M,D,  I B I ) = e x p ( - M o )  1 - e x p ( - n / 2 l B I )  x 
7"f, 

:~ .i -ix o / ~ ~ s~(,<) 

/ 
C= 

Fig. 2. The caustic and ray trajectories in the case of symmetrical 
Laue diffraction. 
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where 
f l d~ cosh (Mb¢) cosh [(M/D+2)ln {l//[1 +D2(1 -¢2)]  + D V ( 1 -  ¢2)} 1 

× _ ,V(1 _~2) l/J1 + O2(1 _~2)] 

x Im ZoO +b)t 1 - b  
~=-{, Mo=cgl/[lbl Re(Z_hZh)] , Mb=i---~ Mo , 

D= Bt , M=2lkl t .  

Here the parameter Mo(M) describes the normal 
(anomalous) absorption, Mb the asymmetry of the ab- 
sorption and D the effective deformation. 

The intensity (5.1) is normalized to unity for a perfect 
transparent crystal, ~ ( 0 ,  0, 0, 0, 0) = 1. Generally, in- 
tegral reflecting power from a perfect absorbing crystal 
is 

~(Mo,  Mb, M,O,O)=exp(--Mo)Io[V(M 2 + M2)] (5.2) 

[I0(x) is the Bessel function of zero order]. 
The relative error of the intensity (5.1) due to the 

use of (3.1) instead of the exact formula (2.12) can be 
shown to decrease with increase of [BI and t as 
[t(1 + B2)] - '  < 1. 

Of special interest is the behaviour of the integrated 

i / 

i I 
I 

I 

i I 

t I t  

1o to 3oD 

(a) 

x x 

i t 
/ 

i 
/ 

/ 
1 1  

[ 10" 20" 30' 4,0" b 

(b) 
. • - . . -  _ • 

40 30 20 I0 

Fig. 3. The integrated diffracted intensity ~ as a function of the 
effective deformation. (a) M = 0, Z = 15" (b) M = 5, Z = 30 (see text). 

(5.1) 

intensity ~ in the limit [BI ~ ~ .  As ]B[ increases, 
formula (5.1) tends to 

2t exp ( - M 0 )  sinh (Mb) (5.3) 
Mb 

in the case of the extremely deformed crystal, i.e. ~/, is 
proportional to the crystal thickness. This is nothing 
but the exact kinematical limit of the integral reflecting 
power. 

For intermediate values of IB] the integral (5.1) 
cannot be evaluated in an explicit form. Ando & Kato 
(1970) tabulated the relative intensity 

~(Mo,  O,M,D) 
E(M,O)= ~2~(M,0, M,0) 

for the symmetrical Laue diffraction and 0_< M_< 25, 
- 5_< D_< 5. In a general case, the number  of param- 
eters characterizing the integral reflecting power in- 
creases from two (M,D) to four (M,D, Mb, IB]), which 
makes the tabulation difficult. 

For practical purposes we suggest an approximate 
numerical method of the calculation of (5.1) based on 
the Gauss-Chebyshev integration formula: 

f i ~/(~)d~ ~-2 ~ r/(~k) (5.4) -1  V ( 1 - - 4  2 ) k : l  

where ~k are the roots of the Chebyshev polynomial of 
nth order: 

=cos  {.2k- lrc)  

As an example, Fig. 3 shows the intensity (5.1) versus 
the effective deformation D for several crystals of 
different thickness Z=2Bt. The dashed line cor- 
responds to the results of the eikonal theory without 
taking into account the static scattering factor 
[1-exp(-n/2lBD 1/2. The intensity 'saturation' as- 
sociated with the transition to the kinematical limit is 
easily noticeable. Owing to its symmetry, the values of 
the function under the integrand in (5.1) were taken 
in four points only for n = 7 provided that the accuracy 
of the computation is of the order of 0-5 %. 

6 .  C o n c l u s i o n  

The most significant conclusions to be drawn from the 
present study are: (1) the extension of the applicability 
of the ray-optics theory for any strain gradient is 
feasible. As a consequence, the static scattering factor 
[ 1 - e x p  (-~/2[B[)] 1/2 and the scattering phase ~o(]B[) 
in the amplitudes of the dynamical wave fields appear. 
The static scattering factor yields automatically the 
kinematical limit of integrated diffracted intensity with 
increasing strain gradient. (2) The renormalization of 
the dynamical absorption due to a strain gradient. 
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Generally, this complicates the division of the dynam- 
ical wave fields into strongly and weakly absorbing 
ones, but images their actual behaviour. 

The fact of principal importance is that the basic 
concept of ray optics - the ray trajectories - is ade- 
quate even in the case of large strain gradients. As de- 
formation increases, the trajectories tend to 'kine- 
matical' trajectories. Simultaneously, the applicability 
range of the generalized eikonal theory is enlarged, so 
that the trajectories are never meaningless. There is 
reason for a future attempt to modify the eikonal 
theory in such a way that the correct asymptotic 
solution of the Takagi dynamical equations could be 
obtained for any distortion. 

In the general case of an incident wave of finite 
spatial and angular width some difficulties are en- 
countered because of the intersection of the ray trajec- 
tories. In particular, close to the caustic, the stationary- 
phase method (hence, the ray optics itself) leads to an 
infinite value of the intensity and is inapplicable. This 
is of special interest for several practical purposes, such 
as multiple-crystal topography. The problem pointed 
out here is treated by Petrashen' & Chukhovskii (1976). 

APPENDIX I 

From (2.2) it follows that the coefficients A,B,C are 
determined by the relations: 

A=[)2(hu),  B=f)+D_(hu),  C=L)2(hu), 

b±=½(~z___~--~x ) . (AI.I) 

The differential operators in (AI. 1) can be written in 
terms of Cartesian coordinates as follows: 

/ A \ 2 / 0 2  02 02 
/52 =/)--~) /0-J2 + tan2 q°° ~-~x2 + 2 tan (P° ~-0-x ' / 

/' A ' ~ 2 / 0 2  02 

D+L)-= ~2--~n) [0-~z 2+ tan ¢Po tan % 0x 2 
x 

sin (2~) 02 '~ 

7o7h 0 ~ x  ' ) 
( A ~2( 02 _j_~x 2 ~02 ] 

/3 2 = ~-~ ] ~ z 2  + tan 2 % 2 t a n  ¢Ph / • 
\ 

(AI.2) 

In the case of a homogeneously bent crystal, elab- 
orated by Penning & Polder (1961), one obtains the 
following formulae for A, B and C. 

(a) The strain gradient is directed along the z axis. 
The crystal is bent by a mechanical device. 

A 2 270 sin 0n+sin ~[1 + 72(1 + v)] 
A -  dR 2rc?~ ' 

A 2 sin ~k[1 + ?o?h(1 + V)] 
B -  

dR 27Z?0?h ' 

A 2 2yh sin 0n--sin qJ[1 + ?Zh(1 + V)] 
C= A dR 2x72 , (AI.3) 

where d is the lattice spacing, v is the Poisson ratio. 
(b) The same direction of strain gradient. The crystal 

is bent because of a temperature gradient. The co- 
efficients A,B, C can be formally obtained from (AI.3) 
by putting v = - 1 ; 

(c) The strain gradient is directed along the x axis. 
Also, the crystal is bent because of a temperature 
gradient. 

A 2 270 cos OB--cos 6' 
Z = -  

dR 2rc72 
A 2 COS~t 

B -  
dR 2X707h ' 

A 2 27h COS 0B+COS $(1 --472) (AI.4) 
C -  dR 2rc7 ] 

APPENDIX H 
Derivation of the asymptotic expansion in §3 by the 

Olver method 

Let us consider the function 
( a t )  -1/2 

W(v) = ~-~ exp ( - 2itct) (4itct) "/2 

X lFl (2+i~c,n; 4itct ) (AII.1) 

with 
K v(t)= i-~l {]/[t(1 + t)] + In []/(1 + t)+ Vt]}, t= Bzoz/~ z. 

W(v) satisfies the equation 

dZW [41xl 2+f(v)]w (AII.2) 
dv  2 -- 

where 

[ . ( . -2)  8,+3 .l 
s(.)=/(,)= L -i¥ 3 16t(1 +t)s_]" 

According to the first Olver theorem (Slater, 1960), 
(AII.2) has two linearly independent asymptotic solu- 
tions: 

Wx =exp (21xlv + O[(21xl)-M , 

S 

Wz--exp(-21~clv) ~ (Ripely)-O[(21~Cl)-M] .(AII.3) 

Here the functions As are determined by the recurrence 
relations: 
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A o = X  , 

I~cl f 4n(n-- 2) + 3 
A1 : i --~- ) 16l/t[l/(1 +t)_+_l//t_ I 

5t _ 1 "{ 
48(1 + t)]/[t(1 +t)]  48]//(1 +t)[]//(1 + t ) + ] / t ]  j "  

As+ l(t)= -½- dt dAs(t) 1 [co dUdt. 
dv dt 2 ,] f(t)As(t) dt (AII.4) 

The limits of the integration in (AII.4) are chosen in 
such a way that As tends to zero as t ~ ~ .  The func- 
tions W, W1 and W2 are solutions of the same equation, 
so there should be a linear relation of the form: 
W =  C1W1-.~- C 2 W 2. 

The coefficients C1, C2 can be found from the asymp- 
totic behaviour of  W, W1, WE for t --, o0. As a result, 
one obtains 

(2 ') ( 7" 1F1 + ix, n; 4ix ,-~ F(n) exp (2itct) (4ta)-"/2 1 + 

X [(itc)i"exi(--ilc;irc4)F 2+iK W1 

+ • 

Notice that the same result could be obtained from 
(2.19) and the Taylor asymptotic representation of 
O(a,c; x) (Higher Transcendental Functions, 1953), but 
without the higher-order terms. 

The expressions for As(t) when s > 1 are complicated. 
Nevertheless, it is easy to show that 

As(t)=O({l/[t(1 +0-]} -1) 

and the expansions (AII.3) are in powers of 

{4l~cl]/t[(1 + t)] } -1 ~, [0V( 1 -[- B 202)] -1 

So far, no assumption about the value of k has been 
made. Taking into account [k[,~ 1 one has 

(52 +B202)1/2~(1 +B202)1/2 + (1 +B202) 1/2 (AII.6) 

if, of course, O(1 + Bz02) '/z >> 1. 

Now, making use of (AII.6) as well as the known 
relations for the F-function, 

7Z 
F(I + z) = zF(z), F(z)F(I - z ) -  sin ~z '  

one readily obtains the asymptotic representation (3.1). 
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